Bài 7 trang 99 SGK Hình học 10

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho tam giác \(ABC\) với \(H\) là trực tâm. Biết phương trình của đường thẳng \(AB, BH\) và \(AH\) lần lượt là: \(4x + y – 12 = 0, 5x – 4y – 15 = 0\) và \(2x + 2y – 9 = 0\)

Hãy viết phương trình hai đường thẳng chứa hai cạnh còn lại và đường cao thứ ba.

Hướng dẫn giải

Tọa độ đỉnh \(A\) là nghiệm của hệ: 

\(\left\{ \matrix{
4x + y - 12 = 0 \hfill \cr
2x + 2y - 9 = 0 \hfill \cr} \right. \Rightarrow A({5 \over 2},2)\)

Đường thẳng \(BH : 5x – 4y – 15 = 0\) có vecto chỉ phương \(\overrightarrow u  = (4,5)\)

Cạnh \(AC\) vuông góc với \(BH\) nên nhận vecto u làm một vecto pháp tuyến, \(AC\) đi qua \(A({5 \over 2},2)\) và có vecto pháp tuyến \(\overrightarrow u  = (4,5)\) nên có phương trình là:

 \(4.(x - {5 \over 2}) + 5(y - 2) = 0 \)\(\Leftrightarrow 4x + 5y - 20 = 0\)

Tương tự, tọa độ đỉnh \(B\) là nghiệm của hệ: 

\(\left\{ \matrix{
4x + y - 12 = 0 \hfill \cr
6x - 4y - 15 = 0 \hfill \cr} \right. \Rightarrow B(3,0)\)

\(AH: 2x + 2y – 9 = 0\) có vecto chỉ phương \(\overrightarrow v  = ( - 2,2) = 2( - 1,1)\)

\(BC\) vuông góc với \(AH\) nên nhận vecto \(\overrightarrow {v'}  = ( - 1,1)\) làm vecto pháp tuyến, phương trình \(BC\) là:

\( - 1(x - 3) + (y - 0) = 0 \)\(\Leftrightarrow x - y - 3 = 0\)

Tọa độ \(H\) là nghiệm của hệ phương trình:

\(\left\{ \matrix{
5x - 4y - 15 = 0 \hfill \cr
2x + 2y - 9 = 0 \hfill \cr} \right. \Leftrightarrow H({{11} \over 3},{5 \over 6})\)

Đường cao \(CH\) đi qua \(H\) và vuông góc với \(AB\)

Hoàn toàn tương tự, ta viết được phương trình của \(CH\):

\(CH: 3x – 12y – 1= 0.\)

Copyright © 2021 HOCTAP247