Cho tam giác ABC với AB = 4; AC = 5, BC = 6 .
a) Tính các góc A, B, C.
b) Tính độ dài các đường trung tuyến và diện tích tam giác.
c) Tính các bán kính đường tròn nội tiếp và ngoại tiếp tam giác .
a) Ta có \(a = 6, b = 5, c = 4\)
\(\eqalign{
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} = {{{5^2} + {4^2} - {6^2}} \over {2.5.4}} = {1 \over 8}\cr& \Rightarrow \widehat A \approx {83^0} \cr
& \cos B = {{{a^2} + {c^2} - {b^2}} \over {2ac}} = {{{6^2} + {4^2} - {5^2}} \over {2.6.4}} = {9 \over {16}}\cr& \Rightarrow \widehat B \approx {56^0} \cr
& \Rightarrow \,\,\widehat C \approx {41^0} \cr} \)
b) Ta có
\(\eqalign{
& m_a^2 = {1 \over 4}\left( {2{b^2} + 2{c^2} - {a^2}} \right) \cr&\;\;\;\;\;\;= {1 \over 4}\left( {50 + 32 - 36} \right) = {{46} \over 4}\,\, \Rightarrow \,\,{m_a} = {{\sqrt {46} } \over 2} \cr
& m_b^2 = {1 \over 4}\left( {2{a^2} + 2{c^2} - {b^2}} \right) = {{79} \over 4}\,\, \Rightarrow \,\,{m_b} = {{\sqrt {79} } \over 2} \cr
& \Rightarrow \,\,{m_c} = {{\sqrt {106} } \over 2} \cr} \)
Copyright © 2021 HOCTAP247