Bài 6 trang 126 SGK Hình học 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).

a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau \(BD'\) và \(B'C\).

b)Tính khoảng cách của hai đường thẳng \(BD'\) và \(B'C\)

Hướng dẫn giải

a) \(AB ⊥ (BCC’B’) ⇒ AB ⊥ B’C\)

\(BCC’B’\) là hình vuông có \(BC’ ⊥ B’C\)

\(⇒ B’C ⊥ (ABC’D’)\) và \(BD' ⊂ (ABC’D’)\)

Trong mặt phẳng \((ABC’D’)\) ta kẻ \(IK ⊥ BD’\) vì \(B’C ⊥ (ABC’D’) ⇒ B’C ⊥ IK\)

Kết hợp với \(IK ⊥ BD’ ⇒ IK\) là đường vuông góc chung của \(B’C\) và \(BD’\)

b) Ta tính \(IK\) từ hình chữ nhật \(ABC’D’\) với \(AB = a, BC’ = a\sqrt2, BD’ = a\sqrt3\)

\(∆BIK\) đồng dạng \(∆BD’C’\) ta có:   

\(\eqalign{
& \Rightarrow {{IK} \over {D'C'}} = {{BI} \over {B{\rm{D}}'}} \cr
& \Rightarrow IK = {{BI.D'C'} \over {B{\rm{D}}'}} \cr
& IK = {1 \over 6}a\sqrt 6 \cr} \).

Copyright © 2021 HOCTAP247