Bài 12 trang 78 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Giải và biện luận các phương trình sau (m là tham số):

a) 2(m + 1)x - m(x - 1) = 2m + 3;

b) m2(x - 1) + 3mx = (m2 + 3)x - 1;

c) 3(m + 1)x + 4 = 2x + 5(m + 1);

d) m2x + 6 = 4x + 3m.

Hướng dẫn giải

a) 2(m + 1)x - m(x - 1) = 2m + 3;

⇔ (2m + 2)x – mx = 2m + 3 – m

⇔ (m + 2)x = m + 3

+ Nếu m ≠ -2 thì phương trình có nghiệm \(x = {{m + 3} \over {m + 2}}\)

+ Nếu m = - 2 thì 0x = 1 phương trình vô nghiệm

b) m2(x - 1) + 3mx = (m2 + 3)x – 1

⇔ m2x – m2 + 3mx = m2x + 3x – 1

⇔ 3(m – 1)x = m2 – 1

+ Nếu m ≠ 1 thì phương trình có nghiệm: \(x = {{{m^2} - 1} \over {3(m - 1)}} = {{m + 1} \over 3}\)

+ Nếu m = 1 thì 0x = 0. Phương trình có tập nghiệm \(S =\mathbb R\)

c) 3(m + 1)x + 4 = 2x + 5(m + 1)

⇔ (3m + 1)x = 5m + 1

+ Nếu m ≠ \( - {1 \over 3}\) thì phương trình có nghiệm \(x = {{5m + 1} \over {3m + 1}}\)

+ Nếu m = \( - {1 \over 3}\) thì \(0x =  - {2 \over 3}\) , phương trình vô nghiệm

d) m2x + 6 = 4x + 3m

⇔ (m2 – 4)x = 3(m – 2)

+ Nếu m2 – 4 ≠ 0 ⇔ m ≠ ± 2 thì phương trình có nghiệm: \(x = {{3(m - 2)} \over {{m^2} - 4}} = {3 \over {m + 2}}\)

+ Nếu m  = 2 thì 0x = 0, ta có \(S =\mathbb R\)

+ Nếu m = -2 thì 0x = -12; S = Ø

Copyright © 2021 HOCTAP247