Giải phương trình x2 + (4m + 1)x + 2(m - 4) = 0, biết rằng nó có hai nghiệm và hiệu giữa nghiệm lớn và nghiệm nhỏ bằng 17.
Ta có:
Δ = (4m + 1)2 – 8( m – 4) = 16m2 + 33 > 0; ∀m
Do đó, phương trình luôn có hai nghiệm phân biệt
x1 + x2 = - 4m – 1; x1x2 = 2(m – 4) (x1 > x2)
Ta có:
x1 – x2 = 17 ⇔ (x1 – x2)2 = 289
⇔ (x1 + x2)2 – 4x1x2 = 289
⇔ (4m + 1)2 – 8(m – 4) = 289
⇔ 16m2 + 33 = 289
⇔ m = ± 4
+) Với m = 4 phương trình có 2 nghiệm:
\(\eqalign{
& {x_1} = {{ - 17 - \sqrt {289} } \over 2} = - 17 \cr
& {x_2} = {{ - 17 + \sqrt {289} } \over 2} = 0 \cr} \)
+) Với m = -4 phương trình có 2 nghiệm:
\(\eqalign{
& {x_1} = {{15 - \sqrt {289} } \over 2} = - 1 \cr
& {x_2} = {{15 + \sqrt {289} } \over 2} = 16 \cr} \)
Copyright © 2021 HOCTAP247