Bài 2 trang 97 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Tìm số hạng đầu và công sai của các cấp số cộng sau, biết:

\(a)\,\,\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 10\\
{u_1} + {u_6} = 17
\end{array} \right.\,\,\,\,\,\,\,\,\,b)\,\,\left\{ \begin{array}{l}
{u_7} - {u_3} = 8\\
{u_2}.{u_7} = 75
\end{array} \right.\)

Hướng dẫn giải

Sử dụng công thức SHTQ: \(u_n= u_1+ (n – 1)d\).

Lời giải chi tiết

\(\begin{array}{l}
a)\,\,\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 10\\
{u_1} + {u_6} = 17
\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}
{u_1} - \left( {{u_1} + 2d} \right) + {u_1} + 4d = 10\\
{u_1} + {u_1} + 5d = 17
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{u_1} + 2d = 10\\
2{u_1} + 5d = 17
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_1} = 16\\
d = - 3
\end{array} \right.\\
b)\,\,\left\{ \begin{array}{l}
{u_7} - {u_3} = 8\\
{u_2}.{u_7} = 75
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_1} + 6d - {u_1} - 2d = 8\\
\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
4d = 8\\
\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75
\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}
d = 2\\
\left( {{u_1} + 2} \right)\left( {{u_1} + 12} \right) = 75
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
d = 2\\
u_1^2 + 14{u_1} - 51 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
d = 2\\
\left[ \begin{array}{l}
{u_1} = 3\\
{u_1} = - 17
\end{array} \right.
\end{array} \right.
\end{array}\)

 

                                 

Copyright © 2021 HOCTAP247