Bài 25. Cho cấp số cộng (un) có \({u_1} - {u_3} = 6\) và \(u_5= -10\). Hãy tìm công sai và số hạng tổng quát của cấp số cộng đó.
Gọi \(d\) là công sai của cấp số cộng
Ta có:
\(\left\{ {\matrix{{{u_1} - {u_3} = 6} \cr {{u_5} = - 10} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{u_1} - \left( {{u_1} + 2d} \right) = 6} \cr {{u_1} + 4d = - 10} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{d = - 3} \cr {{u_1} = 2} \cr} } \right.\)
Vậy \(d = -3\) và \({u_n} = {u_1} + \left( {n - 1} \right)d = 2 - 3\left( {n - 1} \right) = - 3n + 5\)
Copyright © 2021 HOCTAP247