Bài 4 trang 107 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hai cấp số nhân có cùng số các số hạng. Tính các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.

Hướng dẫn giải

SHTQ của cấp số nhân: \({u_n} = {u_1}{q^{n - 1}}\) với \(u_1\) là số hạng đầu của CSN và \(q\) là công bội của CSN.

Lời giải chi tiết

Ta có \((a_n)\) là cấp số nhân và \((b_n)\) là cấp số nhân tương ứng.

Ta có:

\({a_n} = {\rm{ }}{a_1}.{\rm{ }}{q_1}^{n - 1},{\rm{ }}{q_1}\) là hằng số

\({b_n} = {\rm{ }}{b_1}.{\rm{ }}{q_2}^{n - 1},{\rm{ }}{q_2}\) là hằng số

Khi đó: \({a_n}.{b_n} = {\rm{ }} = {\rm{ }}{a_1}.{\rm{ }}{q_1}^{n - 1}.{\rm{ }}{b_1}.{\rm{ }}{q_2}^{n - 1} = {\rm{ }}({a_1}{b_1}){({q_1}{q_2})^{n - 1}}\)

Vậy dãy số \(a_nb_n\) là một cấp số nhân có công bội : \(q = q_1q_2\)

Ví dụ:

\(1, 2, 4 ,...\) là cấp số nhân có công bội \(q_1= 2\)

\(3, 9, 27, ...\) là cấp số nhân có công bội \(q_2= 3\)

Suy ra: \(3, 18, 108...\) là cấp số nhân có công bội: \(q = q_1q_2= 2.3 = 6\).

Copyright © 2021 HOCTAP247