Bài 7 trang 107 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Xét tính tăng, giảm và bị chặn của các dãy số \((u_n)\), biết:

a) \({u_n} = n + {1 \over n}\)

b) \({u_n} = {( - 1)^n}\sin {1 \over n}\)

c) \({u_n} = \sqrt {n + 1}  - \sqrt n \)

Hướng dẫn giải

*) Xét hiệu \({u_{n + 1}} - {u_n}\).

Nếu hiệu trên dương thì dãy số là dãy số tăng.

Nếu hiệu trên âm thì dãy số là dãy số giảm.

Nếu hiệu trên bằng 0 thì dãy số là dãy không đổi.

*) Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho \({u_n} \le M\,\,\forall n \in {N^*}\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho \({u_n} \ge m\,\,\forall n \in {N^*}\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M,m\) sao cho \(m \le {u_n} \le M\,\,\forall n \in {N^*}\).

Lời giải chi tiết

Xét hiệu:

\(\begin{array}{l}
\,\,\,\,{u_{n + 1}} - {u_n}\\
= \left( {n + 1 + \frac{1}{{n + 1}}} \right) - \left( {n + \frac{1}{n}} \right)\\
= n + 1 + \frac{1}{{n + 1}} - n - \frac{1}{n}\\
= 1 + \frac{1}{{n + 1}} - \frac{1}{n}\\
= \frac{{{n^2} + n + n - n - 1}}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + n - 1}}{{n\left( {n + 1} \right)}} > 0\,\,\forall n \in {N^*}
\end{array}\)

Suy ra: \(u_n\) là dãy số tăng.

Mặt khác: \({u_n} = n + {1 \over n} \ge 2\sqrt {n.{1 \over n}}  = 2,\forall n \in {N^*}\) \(\Rightarrow u_n\) là dãy số bị chặn dưới.

Khi \(n\) càng lớn thì \(u_n\) càng lớn nên \(u_n\) là dãy số không bị chặn trên.

Vậy \(u_n\) là dãy số tăng và bị chặn dưới.

b) Ta có:

 \(u_1= (-1)^0sin1 = sin 1 > 0\)

\(\eqalign{& {u_2} = {\left( { - 1} \right)^1}.\sin {1 \over 2} = - \sin {1 \over 2} < 0 \cr & {u_3} = {( - 1)^2}.\sin {1 \over 3} = \sin {1 \over 3} > 0 \cr} \)

\(⇒ u_1> u_2\) và \(u_2< u_3\)

Vậy \(u_n\) là dãy số tăng không tăng không giảm.

Ta lại có: \(\left| {{u_n}} \right| = \left| {{{\left( { - 1} \right)}^{n - 1}}\sin \frac{1}{n}} \right| = \left| {\sin \frac{1}{n}} \right| \le 1 \)\(\Leftrightarrow  - 1 \le {u_n} \le 1\)

Vậy \(u_n\) là dãy số bị chặn và không đơn điệu.

c) Ta có:

\({u_n} = \sqrt {n + 1}  - \sqrt n  = {{n + 1 - n} \over {\sqrt {n + 1}  + \sqrt n }} = {1 \over {\sqrt {n + 1}  + \sqrt n }}\)

Xét hiệu:

\(\eqalign{
& {u_{n + 1}} - {u_n} \cr&= {1 \over {\sqrt {(n + 1) + 1} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr
& = {1 \over {\sqrt {n + 2} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr} \) 

Ta có:

\(\left\{ \matrix{
\sqrt {n + 2} > \sqrt {n + 1} \hfill \cr
\sqrt {n + 1} > \sqrt n \hfill \cr} \right. \)

\(\Rightarrow \sqrt {n + 2} + \sqrt {n + 1} > \sqrt {n + 1} + \sqrt n \)

 \( \Rightarrow {1 \over {\sqrt {n + 2}  + \sqrt {n + 1} }} < {1 \over {\sqrt {n + 1}  + \sqrt n }} \Rightarrow {u_{n + 1}} - {u_n} < 0\)

⇒ un là dãy số giảm.

Mặt khác: \({u_n} = {1 \over {\sqrt {n + 1}  + \sqrt n }} > 0,\forall n \in N^*\) \(\Rightarrow\) un là dãy số bị chặn dưới.

Ta lại có: với n ≥ 1 thì \(\sqrt {n + 1}  + \sqrt n  \ge \sqrt 2  + 1\) \(\Rightarrow {u_n} = {1 \over {\sqrt {n + 1}  + \sqrt n }} \le {1 \over {\sqrt 2  + 1}}\)

Suy ra: \(u_n\) là dãy số bị chặn trên.

Vậy \(u_n\) là dãy số giảm và bị chặn.

Copyright © 2021 HOCTAP247