Bài 1: Cho \(f(x) = {x^3} - 2{{\rm{x}}^2} + 3{\rm{x}} + 1;\)\(\;g(x) = {x^3} + x - 1;h(x) = 2{x^2} - 1.\)
a) Tính \(f(x) - g(x) + h(x) = P(x).\)
b) Tính \(P(0);P( - 2).\)
Bài 2: Cho \(A(x) = 2{{\rm{x}}^4} - 3{{\rm{x}}^2} + 2{\rm{x}} + 1;\)\(\;B(x) = {x^4} + {x^3} - {x^2} + 5.\) Tìm đa thức C(x) sao cho \(A(x) - C(x) = B(x)\).
Bài 1:
a) Ta có:
\(\eqalign{ P(x)& = ({x^3} - 2{{\rm{x}}^2} + 3{\rm{x}} + 1) - ({x^3} + x - 1) + (2{x^2} - 1) \cr & {\rm{ }} = {x^3} - 2{{\rm{x}}^2} + 3{\rm{x}} + 1 - {x^3} - x + 1 + 2{x^2} - 1 \cr & {\rm{ }} = 2{\rm{x}} + 1. \cr} \)
b) \(P(0) = 2.0 + 1 = 1;\)
\(P( - 2) = 2.( - 2) + 1 = - 3.\)
Bài 2: Ta có:
\(2{{\rm{x}}^4} - 3{{\rm{x}}^2} + 2{\rm{x}} + 1 - C(x) = {x^4} + {x^3} - {x^2} + 5\)
\(\eqalign{ \Rightarrow C(x) &= 2{{\rm{x}}^4} - 3{{\rm{x}}^2} + 2{\rm{x + 1 - }}{{\rm{x}}^4} - {x^3} + {x^2} - 5 \cr & {\rm{ }} = {x^4} - {x^3} - 2{{\rm{x}}^2} + 2{\rm{x}} - 4. \cr} \)
Copyright © 2021 HOCTAP247