Giải bài 45 trang 45 - Sách giáo khoa Toán 7 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho đa thức \(P(x) = x^4 - 3x^2 + \dfrac{1}{2}- x\)

Tìm các đa thức Q(x), R(x),sao cho:

\(a) P(x) + Q(x) = x^5 - 2x^2+ 1\)

\(b) P(x) – R(x) = x^3\)

Hướng dẫn giải

\(a) P(x) + Q(x) = x^5 - 2x^2+ 1\)

\(Q(x)=x^5-2x^2+1-P(x)\)

\(Q(x)=\) \((x^5-2x^2+1)-\left ( x^4 - 3x^2 + \dfrac{1}{2}- x \right )\)

         \(=\,\,x^5-2x^2+1-x^4 + 3x^2 - \dfrac{1}{2}+ x\)

         \(=x^5-x^4+3x^2-2x^2+x+1-\dfrac{1}{2}\)

         \(=x^5-x^4+x^3+x+\dfrac{1}{2}\)

b) Ta có : 

\(P(x) – R(x) = x^3\)

\( R(x) = P(x) –x^3\)

\(R(x)= (x^4 - 3x^2 + \dfrac{1}{2}- x)-x^3\)

         \(=x^4-x^3-3x^2-x+\dfrac{1}{2}\)

Vậy \(R(x)\) \(=x^4-x^3-3x^2-x+\dfrac{1}{2}\)

Copyright © 2021 HOCTAP247