Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Bài 3. Góc nội tiếp Giải bài 22 trang 76 - Sách giáo khoa Toán 9 tập 2

Giải bài 22 trang 76 - Sách giáo khoa Toán 9 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

      Trên đường tròn (O) đường kính AB, lấy điểm M (khác A và B). Vẽ tiếp tuyến của (O) tại A. Đường thẳng BM cắt tiếp tuyến đó tại C. Chứng minh rằng ta luôn có:

\(MA^2 = MB . MC\)

Hướng dẫn giải

   Ta có \( AC \perp AB\)( tính chất của tiếp tuyến)

   \( \widehat{AMB}= 90^0\) ( góc nội tiếp chắn nữa đường tròn đường kính AB) \(\Rightarrow AM \perp BC\)

   Do đó \(\Delta ABC\) vuông tại A, và AM là đường cao của tam giác

   Áp dụng hệ thức lượng \(h^2 = b'.c'\) vào tam giác vuông ABC ta được:   \(MA^2= MB.MC\)

Copyright © 2021 HOCTAP247