Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Bài 3. Góc nội tiếp Giải bài 23 trang 76 - Sách giáo khoa Toán 9 tập 2

Giải bài 23 trang 76 - Sách giáo khoa Toán 9 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

    Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn.   Qua M kẻ hai đường thẳng . Đường thẳng thứ nhất cắt (O) tại A và B.   Đường thẳng thứ hai cắt (O) tại C và D. Chứng minh MA.MB = MC.MD.

   Hướng dẫn: Xét cả hai trường hợp điểm M nằm bên trong và bên ngoài  đường tròn. Trong mỗi trường hợp, xét hai tam giác đồng dạng.

Hướng dẫn giải

   Trường hợp M nằm bên trong đường tròn(h.29)

   Xét \( \Delta MAC \ và \ \Delta MDB \) có:

   \( \widehat{CAM}= \widehat{BDM}\) ( hai góc nội tiếp cùng chắn cung \(\stackrel\frown{BC}\)

   \( \widehat{M_1}= \widehat{M_2}\) ( đối đỉnh) 

    Do đó \( \Delta MAC \approx \Delta MDB \)(g.g)

   \( \Rightarrow \dfrac{MA}{MD}= \dfrac{MC}{MB}\Rightarrow MA.MB= MC.MD\)

   Trường hợp điểm M nằm bên ngoài đường tròn: chứng minh tương tự.

   

Copyright © 2021 HOCTAP247