Người ta đổ thêm \(200\) g nước vào một dung dịch chứa \(40\) g muối thì nồng độ của dung dịch giảm đi \(10\) %. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước ?
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Lời giải chi tiết
Gọi trọng lượng nước trong dung dịch trước khi đổ thêm nước là: \(x\) (g), \(x > 0\)
Nồng độ muối của dung dịch khi đó là: \(\frac{40}{x + 40}\)
Nếu đổ thêm \(200\) g nước vào dung dịch thì trọng lượng của dung dịch sẽ là: \(x + 40 + 200\) (g)
Nồng độ của dung dịch bây giờ là: \(\frac{40}{x + 240}\)
Vì nồng độ muối giảm \(10\)% nên ta có phương trình:
\(\frac{40}{x + 40}\) - \(\frac{40}{x + 240}\) = \(\frac{10}{100}\)
Giải phương trình:
\((x + 40)(x + 240) = 400(x + 240 - x - 40)\)
hay \(x^2 + 280x - 70400 = 0\)
\(\Delta' = 19600 + 70400 = 90000\), \(\sqrt{\Delta'} = 300\)
\({x_1} = 160, {x_2} = -440\)
Vì \(x > 0\) nên \({x_2} = -440\) (loại)
Vậy trước khi đổ thêm nước, trong dung dịch có \(160\) g nước.
Copyright © 2021 HOCTAP247