Tính
a) \(\frac{\sqrt{2} }{\sqrt{18}}\)
b) \(\frac{\sqrt{15} }{\sqrt{735}}\)
c) \(\frac{\sqrt{12500} }{\sqrt{500}}\)
d) \(\frac{\sqrt{6^5} }{\sqrt{2^3.3^5}}\)
Hướng dẫn:
Áp dụng quy tắc chia căn bậc hai:
Nếu \(A \ge 0, B> 0 \) thì \(\frac{\sqrt{A} }{\sqrt{B}}= \sqrt{\frac{A}{B}}\)
Giải:
a) \(\frac{\sqrt{2} }{\sqrt{18}}= \sqrt{\frac{2}{18}} = \sqrt{\frac{1}{9}}=\frac{1}{3} \)
b) \(\frac{\sqrt{15} }{\sqrt{735}}= \sqrt{\frac{15}{735}} = \sqrt{\frac{1}{49}}=\frac{1}{7} \)
c) \(\frac{\sqrt{12500} }{\sqrt{500}}= \sqrt{\frac{12500}{500}} = \sqrt{25}=5\)
d) \(\frac{\sqrt{6^5} }{\sqrt{2^3.3^5}}= \sqrt{\frac{6^5}{2^3.3^5}} = \sqrt{\frac{2^5.3^5}{2^3.3^5}}= \sqrt{4}=2\)
Copyright © 2021 HOCTAP247