a. Chứng minh (O) và (O’) cắt nhau tại hai điểm phân biệt.
b. Chứng minh đường thẳng DE là tiếp tuyến của (O’).
a. ∆ABC vuông tại A, ta có: \(BC = \sqrt {A{B^2} + A{C^2}} \)\(\;= \sqrt {{6^2} + {8^2}} = 10\,\left( {cm} \right)\)
Lại có: \(AH.BC = AB.AC\) (hệ thức lượng)
\( \Rightarrow AH = {{AB.AC} \over {BC}} = {{6.8} \over {10}} = 4,8\,\left( {cm} \right)\)
Do đó bán kính của (O) là : \(R = 2,4\) (cm)
Ta có: \(A{C^2} = BC.HC\) (hệ thức lượng)
\( \Rightarrow HC = {{A{C^2}} \over {BC}} = {{{8^2}} \over {10}} = 6,4\,\left( {cm} \right)\)
nên bán kính của (O’) là \(R’ = 3,2cm\)
Mặt khác: OO’ là đường trung bình của ∆AHC
nên \(OO' = {1 \over 2}AC = {1 \over 2}.8 = 4\,\left( {cm} \right)\)
Ta có: \(OO’ b. Ta có: \(\widehat {ADH} = \widehat {AEH} = 90^\circ \) (AH là đường kính) và \(\widehat {BAC} = 90^\circ \) (gt) nên ADHE là hình chữ nhật (có ba góc vuông). O là giao điểm hai đường chéo AH và \(DE, OH = OE ⇒ ∆OHE\) cân tại O \( \Rightarrow \widehat {OHE} = \widehat {OEH}\) Mặt khác, ∆O’HE cân tại O’ (\(O’H = O’E = R’\)) \( \Rightarrow \widehat {O'HE} = \widehat {O'EH},\) mà \(\widehat {OHE} + \widehat {O'HE} = 90^\circ \) (gt) Do đó \(\widehat {OEH} + \widehat {O'EH} = 90^\circ \) hay \(OE ⊥ O’E\). \(⇒ DE\) là tiếp tuyến của đường tròn (O’).
Copyright © 2021 HOCTAP247