Câu 17 trang 112 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:

\(A = \sqrt {x - 1}  + \sqrt {4 - x} \)

Hướng dẫn giải

Điều kiện: \(1 ≤ x ≤ 4\)

Với \(1 ≤ x ≤ 4\), ta có:

 \({A^2} = {(\sqrt {x - 1}  + \sqrt {4 - x} )^2} \)

   \( = 3 + 2\sqrt {(x - 1)(4 - x)}  \le 3 + x - 1 + 4 - x = 6\)

(Theo bất đẳng thức Cô-si)

Suy ra: \(A \le \sqrt 6 \)

Dấu “=” xảuy ra khi \(x – 1= 4 – x  \Rightarrow x = {5 \over 2}\)  (thỏa mãn điều kiện : \(1 ≤ x ≤ 4\))

Vậy giá trị lớn nhất của A là \(\sqrt 6 \)

 \({A^2} = 3 + 2\sqrt {(x - 1)(4 - x)}  \ge 3\)

vì \(\sqrt {(x - 1)(4 - x)}  \ge 0\)

Vậy \(A \ge \sqrt 3 \)

Copyright © 2021 HOCTAP247