Câu 19 trang 112 SGK Đại số 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Chứng minh rằng nếu a, b, c, d là bốn số không âm thì:

 \({\left({{a + b + c + d} \over 4}\right)^4} \ge abcd\)

Hướng dẫn giải

Theo bất đẳng thức Cô-si, ta có:

\(\eqalign{
& {{{a + b + c + d} \over 4}} \cr&= {1 \over 2}({{a + b} \over 2} + {{c + d} \over 2}) \ge {1 \over 2}(\sqrt {ab} + \sqrt {cd} )\cr& \ge \sqrt {\sqrt {ab} .\sqrt {cd} } = \root 4 \of {abcd} \cr} \)

Bất đẳng thức cô si

\(⇒ {\left({{a + b + c + d} \over 4}\right)^4}\ge abcd\)

Copyright © 2021 HOCTAP247