Cho hàm số \(y = f\left( x \right)\) có đạo hàm đến cấp 2 trên tập số thực. Tìm hệ thức đúng?

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm đến cấp 2 trên tập số thực. Tìm hệ thức đúng?

A. \(f''\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}.\)

B. \(f''\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f'\left( x \right) - f'\left( 1 \right)}}{{x - 1}}.\)  

C. \(f''\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{x}.\)

D. \(f''\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( 1 \right)}}{{x - 1}}.\)

* Đáp án

B

* Hướng dẫn giải

\(f''\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f'\left( x \right) - f'\left( 1 \right)}}{{x - 1}}.\)  

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247