Tìm hệ số của x trong khai triển \({\left( {{x^2} + x + 2} {x + 1} \right)\) thành đa thức:

Câu hỏi :

Tìm hệ số của x trong khai triển \({\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\) thành đa thức:

A. 16

B. 6

C. 8

D. 2

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}{\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{{\left( {{x^2} + x} \right)}^k}{{.2}^{2 - k}}} \\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{2^{2 - k}}\sum\limits_{l = 0}^k {C_k^l{{\left( {{x^2}} \right)}^l}{x^{k - l}}} } \\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{2^{2 - k}}\sum\limits_{l = 0}^k {C_k^l{x^{k + l}}} } \end{array}\)

Số hạng chứa \(x\) trong khai triển trên là: \(C_2^0{2^2}.C_0^0x + C_2^1{.2^1}.C_1^0\).

Vậy hệ số của số hạng chứa \(x\) trong khai triển trên là: \(C_2^0{2^2}.C_0^0 + C_2^1{.2^1}.C_1^0 = 8\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247