Cho hàm số \(f\left( x \right) = + 1}}\). Tập nghiệm của bất phương trình x \right) > 0\) là

Câu hỏi :

Cho hàm số \(f\left( x \right) = \frac{1}{{{x^2} + 1}}\). Tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là

A. \(\mathbb{R}\)

B. \(\emptyset \)

C. \(\left( { - \infty ;0} \right)\) 

D. \(\left( {0; + \infty } \right)\)

* Đáp án

C

* Hướng dẫn giải

TXĐ: \(D = \mathbb{R}\)

Ta có \(f'\left( x \right) = {\left( {\frac{1}{{{x^2} + 1}}} \right)^\prime } =  - \frac{{2x}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)

Xét \(f'\left( x \right) > 0 \Leftrightarrow \frac{{ - 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} > 0\) \( \Leftrightarrow  - 2x > 0 \Leftrightarrow x < 0\)

Vậy \(S = \left( { - \infty ;0} \right)\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247