Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của n số hạng đầu tiên của cấp số cộng là

Câu hỏi :

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của n số hạng đầu tiên của cấp số cộng là

A. \({S_n} = \frac{n}{2}\left[ {{u_1} + (n - 1)d} \right]\).

B. \({S_n} = \frac{n}{2}\left[ {{u_1} + (n + 1)d} \right]\).

C. \({S_n} = \frac{n}{2}\left[ {2{u_1} + (n - 1)d} \right]\).

D. \({S_n} = \frac{n}{2}\left[ {2{u_1} + (n + 1)d} \right]\).

* Đáp án

C

* Hướng dẫn giải

Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai \(d\). Tổng của \(n\) số hạng đầu tiên của cấp số cộng là \({S_n} = \frac{n}{2}\left[ {2{u_1} + (n - 1)d} \right]\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247