Tính \(\mathop {\lim \to + \infty } {2{x^2} + x} - \sqrt {{x^2} + 1} }}{{2x + 1}}.\)

Câu hỏi :

Tính \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2{x^2} + x}  - \sqrt {{x^2} + 1} }}{{2x + 1}}.\)

A. \(\frac{{\sqrt 2  - 1}}{2}.\)

B. \(\frac{1}{2}.\)

C. \(\frac{3}{2}.\)

D. \(\frac{{\sqrt 2  + 1}}{2}.\)

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2{x^2} + x}  - \sqrt {{x^2} + 1} }}{{2x + 1}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {2 + \frac{1}{x}}  - \sqrt {1 + \frac{1}{x}} }}{{2 + \frac{1}{x}}}\\ = \frac{{\sqrt 2  - 1}}{2}\end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247