Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} ABC\) vuông tại là đường cao của \(\Delta SAB\), \(AK\) là đường cao của \(\Delta SAC\). Khẳng định nào sau đây sai?

Câu hỏi :

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\,\,\Delta ABC\) vuông tại \(B,\,\,AH\) là đường cao của \(\Delta SAB\), \(AK\) là đường cao của \(\Delta SAC\). Khẳng định nào sau đây sai?

A. \(AH \bot HK\)

B. \(AH \bot AC\)

C. \(AH \bot BC\)

D. \(AH \bot SC\)

* Đáp án

B

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\\ \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\\\left\{ \begin{array}{l}AH \bot BC\\AH \bot SB\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right)\\ \Rightarrow \left\{ \begin{array}{l}AH \bot HK\\AH \bot BC\\AH \bot SC\end{array} \right.\end{array}\)

Do đó các đáp án A, C, D đúng.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247