Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ - - > 1\\ax + \le Xác định \(a\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).

Câu hỏi :

Cho hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 1}}{{{x^2} - 1}}\,\,\,khi\,\,x > 1\\ax + 2\,\,\,khi\,\,x \le 1\end{array} \right.\). Xác định \(a\) để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).

A. \( - \frac{1}{2}\)

B. 1

C. 2

D. \( \frac{1}{2}\)

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^3} - 1}}{{{x^2} - 1}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + x + 1}}{{x + 1}} = \frac{3}{2}\\\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {ax + 2} \right)\\ = a + 2\end{array}\)

Để để hàm số \(f\left( x \right)\) liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\)\( \Leftrightarrow a + 2 = \frac{3}{2} \Leftrightarrow a =  - \frac{1}{2}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247