A. \( + \infty \)
B. \( - \infty \)
C. -1
D. 1
A
Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 3x + 1} \right)\)\( = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^2}\left( {1 - \frac{3}{x} + \frac{1}{{{x^2}}}} \right)} \right]\)
Vì \(\mathop {\lim }\limits_{x \to - \infty } {x^2} = + \infty \) và \(\mathop {\lim }\limits_{x \to - \infty } \left( {1 - \frac{3}{x} + \frac{1}{{{x^2}}}} \right) = 1\) nên \(\mathop {\lim }\limits_{x \to - \infty } \left[ {{x^2}\left( {1 - \frac{3}{x} + \frac{1}{{{x^2}}}} \right)} \right] = + \infty \).
Vậy \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 3x + 1} \right) = + \infty \).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247