A. \(\alpha = {135^0}\)
B. \(\alpha = {45^0}\)
C. \(\alpha = {90^0}\)
D. \(\alpha = {60^0}\)
B
Ta có: \(AD//BC\) \( \Rightarrow \left( {AD,SC} \right) = \left( {BC,SC} \right)\)
Ta thấy: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right.\) \( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot SB\)
Hay tam giác \(SBC\) vuông tại \(B\).
Có \(SB = \sqrt {S{A^2} + A{B^2}} \) \( = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\( \Rightarrow \tan \widehat {SCB} = \frac{{SB}}{{BC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1\) \( \Rightarrow \widehat {SCB} = {45^0}\)
\( \Rightarrow \left( {BC,SC} \right) = \widehat {SCB} = {45^0}\) hay \(\left( {AD,SC} \right) = {45^0}\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247