Tìm các nghiệm của phương trình \(2\sin 2x - \sqrt 3  = 0\) trong đoạn \(\left[ {0;2\pi } \right].\)

Câu hỏi :

Tìm các nghiệm của phương trình \(2\sin 2x - \sqrt 3  = 0\) trong đoạn \(\left[ {0;2\pi } \right].\)

A. \(S = \left\{ {\frac{\pi }{6};\frac{\pi }{3};\frac{{2\pi }}{3};\frac{{5\pi }}{6}} \right\}\)

B. \(S = \left\{ {\frac{\pi }{6};\frac{\pi }{3};\frac{{7\pi }}{6};\frac{{4\pi }}{3}} \right\}\)

C. \(S = \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6};\frac{{7\pi }}{6}} \right\}\)

D. \(S = \left\{ {\frac{\pi }{3};\frac{{4\pi }}{3};\frac{{5\pi }}{3}} \right\}\)

* Đáp án

B

* Hướng dẫn giải

\(2\sin 2x - \sqrt 3  = 0 \Leftrightarrow \sin 2x = \frac{{\sqrt 3 }}{2} = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \frac{\pi }{3} + k\pi \end{array} \right.,k \in \mathbb{Z}\)

Trong đoạn \(\left[ {0;2\pi } \right]\) phương trình có các nghiệm: \(S = \left\{ {\frac{\pi }{6};\frac{\pi }{3};\frac{{7\pi }}{6};\frac{{4\pi }}{3}} \right\}\) (thử với các giá trị của k, ta thấy 0, 1 thỏa mán cả hai học nghiệm để phương trình có nghiệm thuộc đoạn \(\left[ {0;2\pi } \right]\)).

Copyright © 2021 HOCTAP247