Hộp bi thứ nhất có 4 viên bi đỏ, 3 viên bi vàng và 5 viên bi xanh

Câu hỏi :

Hộp bi thứ nhất có 4 viên bi đỏ, 3 viên bi vàng và 5 viên bi xanh. Hộp bi thứ hai có 2 viên bi đỏ, 6 viên bi vàng và 7 viên bi xanh. Chọn ngẫu nhiên mỗi hộp 2 viên bi, tính xác suất sao cho 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh.

A.181/231

B.181/2310

C.181/2301

D. tất cả sai

* Đáp án

B

* Hướng dẫn giải

Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.

Suy ra số phần tử của không gian mẫu là .

Gọi A  là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:

 ●   Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có  cách.

 Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có  cách.

Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có  cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính

Chọn B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao !!

Số câu hỏi: 107

Copyright © 2021 HOCTAP247