Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép tịnh tiến theo \(\overrightarrow v = \left( {4;6} \right)\), phép tịnh tiến theo \(\overrightarrow v \) biến \(d:x + y + 1 = 0\) t...

Câu hỏi :

Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép tịnh tiến theo \(\overrightarrow v  = \left( {4;6} \right)\), phép tịnh tiến theo \(\overrightarrow v \) biến \(d:x + y + 1 = 0\) thành đường thẳng \(d'\). Khi đó phương trình đường thẳng \(d'\) là:

A. \( - x + y + 9 = 0\)  

B. \(x + y + 9 = 0\)

C. \(x - y + 9 = 0\)  

D. \(x + y - 9 = 0\)

* Đáp án

D

* Hướng dẫn giải

\({T_{\overrightarrow v }}\left( M \right) = M' \Leftrightarrow \overrightarrow {MM'}  = \overrightarrow v \)\( \Leftrightarrow \left\{ \begin{array}{l}x' = x + 4\\y' = y + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' - 4\\y = y' - 6\end{array} \right.\). Thay vào phương trình của d ta được:

\(\begin{array}{l}\left( {x' - 4} \right) + \left( {y' - 6} \right) + 1 = 0\\ \Leftrightarrow x' + y' - 9 = 0\end{array}\)

Vậy \(d':x + y - 9 = 0\)

Copyright © 2021 HOCTAP247