Cho tam giác đều là \(ABC\) có tâm là điểm \(O\). Phép quay tâm \(O\), góc quay φ biến tam giác ABC thành chính nó. Khi đó đó một góc φ thỏa mãn là

Câu hỏi :

Cho tam giác đều \(ABC\) có tâm là  điểm \(O\). Phép quay tâm \(O\), góc quay φ biến tam giác ABC thành chính nó. Khi đó đó một góc φ thỏa mãn là

A. \(\varphi  = {60^0}.\)   

B. \(\varphi  = {90^0}.\) 

C. \(\varphi  = {120^0}.\)      

D. \(\varphi  = {180^0}.\) 

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}{Q_{\left( {O,{{120}^0}} \right)}}\left( A \right) = B\\{Q_{\left( {O,{{120}^0}} \right)}}\left( B \right) = C\\{Q_{\left( {O,{{120}^0}} \right)}}\left( C \right) = A\\ \Rightarrow {Q_{\left( {O,{{120}^0}} \right)}}\left( {ABC} \right) = BCA\end{array}\)

Chọn C

Copyright © 2021 HOCTAP247