Trong mặt phẳng Oxy, cho parabol \((P)\) có phương trình \({x^2} = 4y\). Hỏi parabol nào trong các parabol sau là ảnh của \((P)\) qua phép đối xứng trục Ox ?

Câu hỏi :

Trong mặt phẳng Oxy, cho parabol \((P)\) có phương trình \({x^2} = 4y\). Hỏi parabol nào trong các parabol sau là ảnh của \((P)\) qua phép đối xứng trục Ox ?

A. \({x^2} = 4y\)     

B. \({x^2} =  - 4y\)

C. \({y^2} = 4x\)      

D.  \({y^2} =  - 4x\) 

* Đáp án

B

* Hướng dẫn giải

Gọi \((P') = \)Đ\(_{Ox}(P)\)

Lấy\(M\left( {x;y} \right) \in (P)\) tùy ý, ta có \({x^2} = 4y\)(1)

Gọi \(M'(x';y') = \)Đ\(_{Ox}(M)\) \( \Rightarrow M' \in (P')\)

Đ\(_{Ox}(M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x}\\{y' =  - y}\end{array}} \right. \)

\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x'}\\{y =  - y'}\end{array}} \right.\)

Thay vào (1) ta được \({x'^2} = 4( - y').\)

Mà \(M' \in (P')\)

Do đó phương trình của \((P'):{x^2} =  - 4y\)

Chọn B.

Copyright © 2021 HOCTAP247