A. \(A'(2;1)\)
B. \(A'( - 2; - 1)\)
C. \(A'( - 1; - 2)\)
D. \(A'(1;2)\)
B
Với phép quay tâm O góc 90 độ điểm A thành A’(x;y) có tọa độ thỏa mãn: \(\begin{array}{l}\left\{ \begin{array}{l}OA = OA'\\(OA;OA') = {90^0}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{( - 1)^2} + {2^2} = {x^2} + {y^2}\\\overrightarrow {OA} .\overrightarrow {OA'} = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 5\\ - x + 2y = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = - 2\\y = - 1\end{array} \right.\end{array} \right.\end{array}\)
Do \(\alpha = {90^0} > 0\) phép quay theo chiều dương suy ra: \(A'( - 2; - 1)\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247