Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11

Câu hỏi :

Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.

A. 5005

B. 805

C. 4250

D. 4249

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản

Lời giải:

Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.

Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C156 = 5005 cách

Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là C66 = 1 

Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có C106 = 210 cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 - 1 = 209 cách

Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có C116 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12  => số cách chọn là 462 - 1 = 461 cách.

Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có C96 = 84cách

Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 - 209 - 461 - 84 - 1 = 4250 cách

Copyright © 2021 HOCTAP247