Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3

Câu hỏi :

Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân.

A. 235

B. 17114

C. 857

D. 819

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Chọn ngẫu nhiên 3 đỉnh trong 20 đỉnh có C203 cách => n(Ω)=1140.

Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đa giác mà cứ 2 đường chéo tạo thành 1 hình chữ nhật và 1 hình chữ nhật tạo thành 4 tam giác vuông => số tam giác vuông là 4.C102=180.

Tuy nhiên, trong C102 hình chữ nhật có 5 hình vuông nên số tam giác vuông cân là 5.4 = 20.

Do đó, số kết quả thuận lợi cho biến cố X là n(X) = 180 – 20 = 160. Vậy P=n(X)n(Ω)=857.

Copyright © 2021 HOCTAP247