a) Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 3{x^2} - 2x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } {x^3}\left( { - 1 + \frac{3}{x} - \frac{2}{{{x^2}}} + \frac{1}{{{x^3}}}} \right)\)
Vì \(\mathop {\lim }\limits_{x \to + \infty } {x^3} = + \infty ,\mathop {\lim }\limits_{x \to + \infty } \left( { - 1 + \frac{3}{x} - \frac{2}{{{x^2}}} + \frac{1}{{{x^3}}}} \right) = - 1 < 0\)
Vậy \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 3{x^2} - 2x + 1} \right) = - \infty \)
b)
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 3} \frac{{\sqrt {x + 1} - 2}}{{9 - {x^2}}} = \mathop {\lim }\limits_{x \to 3} \frac{{(\sqrt {x + 1} - 2)(\sqrt {x + 1} + 2)}}{{(9 - {x^2})(\sqrt {x + 1} + 2)}}\\
= \mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{(9 - {x^2})(\sqrt {x + 1} + 2)}} = \mathop {\lim }\limits_{x \to 3} \frac{{ - 1}}{{(3 + x)(\sqrt {x + 1} + 2)}}\\
= \frac{{ - 1}}{{(3 + 3)(\sqrt {3 + 1} + 2)}} = - \frac{1}{{24}}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247