a) \(\mathop {lim}\limits_{x \to 1} \frac{{{x^4} + x - 2}}{{{x^2} - 1}} = \mathop {lim}\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^3} + {x^2} + x + 2} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\)
\( = \mathop {lim}\limits_{x \to 1} \frac{{\left( {{x^3} + {x^2} + x + 2} \right)}}{{\left( {x + 1} \right)}} = \frac{5}{2}\)
b) \(\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {{x^2} + 12} - 4}}{{{x^2} - 3x + 2}} = \mathop {lim}\limits_{x \to 2} \frac{{{x^2} + 12 - 16}}{{\left( {x - 2} \right)\left( {x - 1} \right)\left( {\sqrt {{x^2} + 12} + 4} \right)}}\)
\( = \mathop {lim}\limits_{x \to 2} \frac{{{x^2} - 4}}{{\left( {x - 2} \right)\left( {x - 1} \right)\left( {\sqrt {{x^2} + 12} + 4} \right)}}\)
\( = \mathop {lim}\limits_{x \to 2} \frac{{\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x - 1} \right)\left( {\sqrt {{x^2} + 12} + 4} \right)}} = \mathop {lim}\limits_{x \to 2} \frac{{\left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {{x^2} + 12} + 4} \right)}} = \frac{4}{8} = \frac{1}{2}\)
c) \(\lim \left( {\sqrt {9{n^2} - 3n + 1} - 3n} \right) = \lim \frac{{9{n^2} - 3n + 1 - 9{n^2}}}{{\left( {\sqrt {9{n^2} - 3n + 1} + 3n} \right)}} = \lim \frac{{ - 3n + 1}}{{\left( {\sqrt {9{n^2} - 3n + 1} + 3n} \right)}}\)
\( = \lim \frac{{ - 3 + \frac{1}{n}}}{{\left( {\sqrt {9 - \frac{3}{n} + \frac{1}{{{n^2}}}} + 3} \right)}} = - \frac{1}{2}\)
d) \(\mathop {lim}\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + x - 2} + 2x - 1}}{{x - 1}} = \mathop {lim}\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{x}{x} - \frac{2}{{{x^2}}}} + 2 - \frac{1}{x}}}{{1 - \frac{1}{x}}} = 1\)
e) \(\mathop {lim}\limits_{x \to 2} \frac{{\sqrt {{x^2} - 3} - 1}}{{\sqrt {x + 7} - 3}} = \mathop {lim}\limits_{x \to 2} \frac{{\left( {{x^2} - 3 - 1} \right)\left( {\sqrt {x + 7} + 3} \right)}}{{\left( {x + 7 - 9} \right)\left( {\sqrt {{x^2} - 3} + 1} \right)}} = \mathop {lim}\limits_{x \to 2} \frac{{\left( {{x^2} - 4} \right)\left( {\sqrt {x + 7} + 3} \right)}}{{\left( {x - 2} \right)\left( {\left( {\sqrt {{x^2} - 3} + 1} \right)} \right)}}\)
\( = \mathop {lim}\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\sqrt {x + 7} + 3} \right)}}{{\left( {x - 2} \right)\left( {\sqrt {{x^2} - 3} + 1} \right)}} = \mathop {lim}\limits_{x \to 2} \frac{{\left( {x + 2} \right)\left( {\sqrt {x + 7} + 3} \right)}}{{\left( {\sqrt {{x^2} - 3} + 1} \right)}} = 12\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247