\(\mathop {lim}\limits_{x \to + \infty } \frac{{f(x)}}{x} = \mathop {lim}\limits_{x \to + \infty } \frac{{\sqrt {4{x^2} + 2x + 3} }}{x} = \mathop {lim}\limits_{x \to + \infty } \frac{{\sqrt {4 + \frac{2}{x} + \frac{3}{{{x^2}}}} }}{1} = 2\)
\(\begin{array}{l}
\mathop {lim}\limits_{x \to + \infty } f(x) - ax = \mathop {lim}\limits_{x \to + \infty } \sqrt {4{x^2} + 2x + 3} - 2x = \mathop {lim}\limits_{x \to + \infty } \frac{{4{x^2} + 2x + 3 - 4{x^2}}}{{\sqrt {4{x^2} + 2x + 3} - 2x}}\\
= \mathop {lim}\limits_{x \to + \infty } \frac{{2x + 3}}{{\sqrt {4{x^2} + 2x + 3} - 2x}} = \mathop {lim}\limits_{x \to + \infty } \frac{{2 + \frac{3}{x}}}{{\sqrt {4 + \frac{2}{x} + \frac{3}{{{x^2}}}} - 2}} = + \infty
\end{array}\)
Vậy \(a = 2,b = + \infty \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247