a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {9{x^2} + 12x} + 3x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{12x}}{{\sqrt {9{x^2} + 12x} - 3x}}} \right)\)
\( = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{12}}{{ - \sqrt {9 + \frac{{12}}{{{x^2}}}} - 3}}} \right) = 2\)
b) \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{\left| {3 - x} \right|\sqrt {{x^2} + 7} - 4\left( {x - 3} \right)}}{{{{\left( {x - 3} \right)}^2}}} = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{\sqrt {{x^2} + 7} - 4}}{{\left( {x - 3} \right)}}\)
\(\begin{array}{l}
= \mathop {\lim }\limits_{x \to {3^ + }} \frac{{x + 3}}{{\sqrt {{x^2} + 7} + 4}}\\
= \frac{3}{4}
\end{array}\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247