a) \(A = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + {x^2} - 5x - 6}}{{2{x^2} + 5x + 2}}\)
\( = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x + 2} \right)\left( {{x^2} - x - 3} \right)}}{{\left( {x + 2} \right)\left( {2x + 1} \right)}} = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 3}}{{2x + 1}} = - 1\)
b) \(B = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {25{x^2} + 10x} - 5x} \right)\)
\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {25{x^2} + 10x} \right) - 25{x^2}}}{{\sqrt {25{x^2} + 10x} + 5x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{10}}{{\sqrt {25 + \frac{{10}}{x}} + 5}} = 1\)
c) \(C = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{\sqrt {{x^2} - 4} }}{{{x^2} + 2x}}\)
\( = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{\sqrt {2 - x} .\sqrt { - 2 - x} }}{{ - x\left( { - 2 - x} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \frac{{\sqrt {2 - x} }}{{ - x\sqrt { - 2 - x} }} = + \infty \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247