A. 3
B. 5
C. 7
D. 4
D
\({U_n} = \frac{{195}}{{4.n!}} = \frac{{\frac{{\left( {n + 3} \right)!}}{{n!}}}}{{\left( {n + 1} \right)!}} = \frac{1}{{n!}}\left[ {\frac{{195}}{4} - \left( {n + 3} \right)\left( {n + 2} \right)} \right]\)
Ta có \({U_n} > 0 \Leftrightarrow \left( {n + 3} \right)\left( {n + 2} \right) < \frac{{195}}{4} \Leftrightarrow {n^2} + 5n - \frac{{171}}{4} < 0 \Leftrightarrow 0 < n < \frac{9}{2}\)
Vậy \(n = \left\{ {1;2;3;4} \right\}\) nên có 4 số hạng dương của dãy
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247