Có bao nhiêu số hạng dương của dãy biết \({U_n} = \frac{{195}}{{4.n!}} - \frac{{A_{n + 3}^3}}{{\left( {n + 1} \right)!}}.\)

Câu hỏi :

Xét \({U_n} = \frac{{195}}{{4.n!}} - \frac{{A_{n + 3}^3}}{{\left( {n + 1} \right)!}}.\) Có bao nhiêu số hạng dương của dãy?

A. 3

B. 5

C. 7

D. 4

* Đáp án

D

* Hướng dẫn giải

\({U_n} = \frac{{195}}{{4.n!}} = \frac{{\frac{{\left( {n + 3} \right)!}}{{n!}}}}{{\left( {n + 1} \right)!}} = \frac{1}{{n!}}\left[ {\frac{{195}}{4} - \left( {n + 3} \right)\left( {n + 2} \right)} \right]\)

Ta có \({U_n} > 0 \Leftrightarrow \left( {n + 3} \right)\left( {n + 2} \right) < \frac{{195}}{4} \Leftrightarrow {n^2} + 5n - \frac{{171}}{4} < 0 \Leftrightarrow 0 < n < \frac{9}{2}\)

Vậy \(n = \left\{ {1;2;3;4} \right\}\) nên có 4 số hạng dương của dãy

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

40 câu trắc nghiệm ôn tập Chương 3 Đại số 11

Số câu hỏi: 40

Copyright © 2021 HOCTAP247