Tìm hệ số của ({x^5}) trong khai triển đa thức của: (x{left( {1 - 2x} ight)^5} + {x^2}{left( {1 + 3x} ight)^{10}})

Câu hỏi :

Tìm hệ số của \({x^5}\) trong khai triển đa thức của: \(x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)

A. 3320

B. 2130

C. 3210

D. 1313

* Đáp án

A

* Hướng dẫn giải

Đặt \(f(x) = x{\left( {1 - 2x} \right)^5} + {x^2}{\left( {1 + 3x} \right)^{10}}\)

Ta có : \(f(x) = x\sum\limits_{k = 0}^5 {C_5^k{{\left( { - 2} \right)}^k}.{x^k}}  + {x^2}\sum\limits_{i = 0}^{10} {C_{10}^i} {\left( {3x} \right)^i}\)

                                    \( = \sum\limits_{k = 0}^5 {C_5^k{{\left( { - 2} \right)}^k}.{x^{k + 1}}}  + \sum\limits_{i = 0}^{10} {C_{10}^i} {3^i}.{x^{i + 2}}\)

Vậy hệ số của \({x^5}\) trong khai triển đa thức của \(f(x)\) ứng với \(k = 4\) và \(i = 3\) là: \(C_5^4{\left( { - 2} \right)^4} + C_{10}^3{.3^3} = 3320\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Bài 3 Nhị thức Niu - Tơn - Toán 11

Số câu hỏi: 21

Copyright © 2021 HOCTAP247