Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O.\) Tam giác \(SBD\) đều. Một mặt phẳng \(\left( P \right)\) song song với \(\left( {SBD} \right)\) và qua điểm \(I\) thuộc cạnh \(AC\) (không trùng với \(A\) hoặc \(C\)). Thiết diện của \(\left( P \right)\) và hình chóp là hình gì?

A. Hình bình hành.

B. Tam giác cân.

C. Tam giác vuông.

D. Tam giác đều.

* Đáp án

D

* Hướng dẫn giải

Gọi \(MN\) là đoạn thẳng giao tuyến của mặt phẳng \(\left( P \right)\) và mặt đáy \(\left( {ABCD} \right).\)

Vì \(\left( P \right)\)//\(\left( {SBD} \right),\,\,\,\left( P \right) \cap \left( {ABCD} \right) = MN\) và \(\left( {SBD} \right) \cap \left( {ABCD} \right) = MN\) suy ra \(MN\)//\(BD.\)

Lập luận tương tự, ta có

\(\left( P \right)\) cắt mặt \(\left( {SAD} \right)\) theo đoạn giao tuyến \(NP\) với \(NP\)//\(SD.\)

\(\left( P \right)\) cắt mặt \(\left( {SAB} \right)\) theo đoạn giao tuyến \(MP\) với \(MP\)//\(SB.\)

Vậy tam giác \(MNP\) đồng dạng với tam giác \(SBD\) nên thiết diện của \(\left( P \right)\) và hình chóp \(S.ABCD\) là  tam giác đều \(MNP.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Trắc nghiệm Hình học 11 Bài 4 Hai mặt phẳng song song

Số câu hỏi: 9

Copyright © 2021 HOCTAP247