Câu hỏi :

Cho dãy số xác định bởi \({u_1} = 1\), \({u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right);{\rm{ }}n \in {N^*}\). Khi đó \({u_{2018}}\) bằng

A. \({u_{2018}} = \frac{{{2^{2016}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)

B. \({u_{2018}} = \frac{{{2^{2018}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\)

C. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)

D. \({u_{2018}} = \frac{{{2^{2017}}}}{{{3^{2018}}}} + \frac{1}{{2019}}\)

* Đáp án

A

* Hướng dẫn giải

Ta có:

\({{\rm{u}}_{n + 1}} = \frac{1}{3}\left( {2{{\rm{u}}_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} \right)\)

\(= \frac{1}{3}\left( {2{u_n} + \frac{3}{{n + 2}} - \frac{2}{{n + 1}}} \right)\)

\(= \frac{2}{3}{u_n} + \frac{1}{{n + 2}} - \frac{2}{3}.\frac{1}{{n + 1}}\)

\( \Leftrightarrow {u_{n + 1}} - \frac{1}{{n + 2}} = \frac{2}{3}\left( {{u_n} - \frac{1}{{n + 1}}} \right)\) (1)

Đặt \({v_n} = {u_n} - \frac{1}{{n + 1}}\), từ ta suy ra: \({v_{n + 1}} = \frac{2}{3}{v_n}\).

Do đó \(\left( {{v_n}} \right)\) là cấp số nhân với \({v_1} = {u_1} - \frac{1}{2} = \frac{1}{2}\), công bội \(q = \frac{2}{3}\).

Suy ra: \({v_n} = {v_1}.{q^{n - 1}} = \frac{1}{2}.{\left( {\frac{2}{3}} \right)^{n - 1}}\)

\(\Leftrightarrow {u_n} - \frac{1}{{n + 1}} = \frac{1}{2}.{\left( {\frac{2}{3}} \right)^{n - 1}}\)

\( \Leftrightarrow {u_n} = \frac{1}{2}.{\left( {\frac{2}{3}} \right)^{n - 1}} + \frac{1}{{n + 1}}\)

Vậy \({u_{2018}} = \frac{1}{2}.{\left( {\frac{2}{3}} \right)^{2017}} + \frac{1}{{2019}}\) \(= \frac{{{2^{2016}}}}{{{3^{2017}}}} + \frac{1}{{2019}}\).

Copyright © 2021 HOCTAP247