A. \(S = \frac{{15\pi }}{4}.\)
B. \(S = 4\pi .\)
C. \(S = \frac{{9\pi }}{2}.\)
D. \(S=5\pi\)
B
Vì dãy các tam giác \({A_1}{B_1}{C_1},{\rm{ }}{A_2}{B_2}{C_2},{\rm{ }}{A_3}{B_3}{C_3},...\) là các tam giác đều nên bán kính đường tròn ngoại tiếp các tam giác bằng cạnh \(\times \frac{{\sqrt 3 }}{3}\).
Với n = 1 thì tam giác đều \({A_1}{B_1}{C_1}\) có cạnh bằng 3 nên đường tròn ngoại tiếp tam giác \({A_1}{B_1}{C_1}\) có bán kính \({R_1} = 3.\frac{{\sqrt 3 }}{3} \Rightarrow {S_1} = \pi {\left( {3.\frac{{\sqrt 3 }}{3}} \right)^2}\).
Với n = 2 thì tam giác đều \({A_2}{B_2}{C_2}\) có cạnh bằng 3/2 nên đường tròn ngoại tiếp tam giác \({A_2}{B_2}{C_2}\) có bán kính \({R_2} = 3.\frac{1}{2}.\frac{{\sqrt 3 }}{3} \Rightarrow {S_2} = \pi {\left( {3.\frac{1}{2}.\frac{{\sqrt 3 }}{3}} \right)^2}\).
Với n = 3 thì tam giác đều \({A_3}{B_3}{C_3}\) có cạnh bằng 3/4 nên đường tròn ngoại tiếp tam giác \({A_3}{B_3}{C_3}\) có bán kính \({R_3} = 3.\frac{1}{4}.\frac{{\sqrt 3 }}{3} \Rightarrow {S_3} = \pi {\left( {3.\frac{1}{4}.\frac{{\sqrt 3 }}{3}} \right)^2}\).
...................
Như vậy tam giác đều \({A_n}{B_n}{C_n}\) có cạnh bằng \(3.{\left( {\frac{1}{2}} \right)^{n - 1}}\) nên đường tròn ngoại tiếp tam giác \({A_n}{B_n}{C_n}\) có bán kính \({R_n} = 3.{\left( {\frac{1}{2}} \right)^{n - 1}}.\frac{{\sqrt 3 }}{3} \Rightarrow {S_n} = \pi {\left( {3.{{\left( {\frac{1}{2}} \right)}^{n - 1}}.\frac{{\sqrt 3 }}{3}} \right)^2}\).
Khi đó ta được dãy S1, S2, ...Sn... là một cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = {S_1} = 3\pi \) và công bội \({u_1} = {S_1} = 3\pi \).
Do đó tổng \(S = {S_1} + {S_2} + ... + {S_n} + ...S = \frac{{{u_1}}}{{1 - q}} = 4\pi \)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247