Cho dãy số un với \({u_n} = \left( {n - 1} \right)\sqrt {\frac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của limun là:

Câu hỏi :

Cho dãy số un với \({u_n} = \left( {n - 1} \right)\sqrt {\frac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của limun là:

A. \( - \infty \)

B. 6

C. 10

D. 0

* Đáp án

D

* Hướng dẫn giải

\(\begin{array}{l}
\lim {u_n} = \lim \left( {n - 1} \right)\sqrt {\frac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \\
 = \lim \sqrt {\frac{{{{\left( {n - 1} \right)}^2}\left( {2n + 2} \right)}}{{{n^4} + {n^2} - 1}}} \\
 = \lim \sqrt {\frac{{\frac{2}{n} - \frac{2}{{{n^2}}} - \frac{2}{{{n^3}}} + \frac{2}{{{n^4}}}}}{{1 + \frac{1}{{{n^2}}} - \frac{1}{{{n^4}}}}}}  = 0
\end{array}\)

Copyright © 2021 HOCTAP247