Cho hình lập phương ABCD.ABCD có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của

Câu hỏi :

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của AC'. Thiết diện là hình gì?

A. Hình vuông.

B. Lục giác đều.

C. Ngũ giác đều.

D. Tam giác đều.

* Đáp án

B

* Hướng dẫn giải

Ta có AC là hình chiếu của AC' lên (ABCD).

Mà \(AC \bot BD\) nên \(AC' \bot BD,{\rm{ }}(1)\)

Ta có \(\left. \begin{array}{l} AD \bot (AA'B'B)\\ A'B \subset (AA'B'B \end{array} \right\} \Rightarrow A'B \bot AD\)

Lại có \(A'B \bot AB'\) suy ra 

\(\left. \begin{array}{l} A'B \bot (AB'C'D)\\ AC' \subset (AB'C'D) \end{array} \right\} \Rightarrow AC' \bot A'B,{\rm{ }}(2)\)

Từ (1) và (2) suy ra \(AC' \bot (A'BD),{\rm{ }}(3)\)

Mặt phẳng trung trực AC' là mặt phẳng \((\alpha)\) đi qua trung điểm I của AC' và \((\alpha ) \bot AC',{\rm{ }}(4)\) 

Từ (3) và (4) suy ra \(\left\{ \begin{array}{l} mp(\alpha ){\rm{ qua }}I\\ (\alpha ){\rm{//}}(A'BD) \end{array} \right.\)

Do đó

Qua I dựng MQ // BD

Dựng \(\begin{array}{l} MN{\rm{//A'D}}\\ {\rm{NP//}}B'D'{\rm{//}}BD\\ QK{\rm{//B'C//A'D}}\\ KH{\rm{//}}BD \end{array}\)

Mà \(MN = NP = PQ = QK = KM = \frac{{a\sqrt 2 }}{2}\)

Suy ra thiết diện là lục giác đều.

Copyright © 2021 HOCTAP247