Cho hàm số Tìm khẳng định đúng trong các khẳng định sau:

Câu hỏi :

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {2x + 8} - 2}}{{\sqrt {x + 2} }}}\\0\end{array}} \right.\,\,\,\,\begin{array}{*{20}{c}}{khi}\\{khi}\end{array}\,\,\,\begin{array}{*{20}{c}}{x > - 2}\\{x = - 2}\end{array}.\) Tìm khẳng định đúng trong các khẳng định sau:(1) \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) = 0\)

A. Chỉ (1) và (3)

B. Chỉ (1) và (2)

C. Chỉ (1)

D. Chỉ (2)

* Đáp án

B

* Hướng dẫn giải

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x)\\ = \mathop {\lim }\limits_{x \to {{( - 2)}^ + }} \dfrac{{\sqrt {2x + 8}  - 2}}{{\sqrt {x + 2} }}\\ = \mathop {\lim }\limits_{x \to {{( - 2)}^ + }} \dfrac{{2x + 4}}{{\sqrt {x + 2} \left( {\sqrt {2x + 8}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to {{( - 2)}^ + }} \dfrac{{2(x + 2)}}{{\sqrt {x + 2} \left( {\sqrt {2x + 8}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to {{( - 2)}^ + }} \dfrac{{2\sqrt {x + 2} }}{{\sqrt {2x + 8}  + 2}} = 0\end{array}\)

Copyright © 2021 HOCTAP247