Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đ...

Câu hỏi :

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác vuông tại đỉnh C. Gọi AH, AK lần lượt là đường cao các tam giác SAB, SAC. Khẳng định nào dưới đây đúng?

A. K là hình chiếu vuông góc của A trên mặt phẳng (SBC)

B. H là hình chiếu vuông góc của A trên mặt phẳng (SBC)

C. B là hình chiếu vuông góc của C trên mặt phẳng (SAB)

D. A là hình chiếu vuông góc của S trên mặt phẳng (AHK)

* Đáp án

A

* Hướng dẫn giải

Ta có: \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)

Mà \(BC \bot AC\) (do \(\Delta ABC\) vuông tại \(C\))

\( \Rightarrow BC \bot \left( {SAC} \right) \Rightarrow BC \bot AK\)

Lại có \(AK \bot SC\left( {gt} \right)\) nên \(AK \bot \left( {SBC} \right)\).

Vậy K là hình chiếu của A lên \(\left( {SBC} \right)\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Trần Văn Giàu

Số câu hỏi: 40

Copyright © 2021 HOCTAP247