Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2020\). Tìm tập nghiệm \(S\) của bất phương trình \(f'\left( x \right) \le 0\).

Câu hỏi :

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2020\). Tìm tập nghiệm \(S\) của bất phương trình \(f'\left( x \right) \le 0\).

A. \(S = \left( { - \infty ;0} \right] \cup \left[ {2; + \infty } \right)\)

B. \(S = \left[ {2; + \infty } \right)\)

C. \(S = \left( {0;2} \right)\)

D. \(S = \left[ {0;2} \right]\)

* Đáp án

D

* Hướng dẫn giải

Ta có: \(f'\left( x \right) = 3{x^2} - 6x\)

\(\begin{array}{l}f'\left( x \right) \le 0 \Leftrightarrow 3{x^2} - 6x \le 0\\ \Leftrightarrow 0 \le x \le 2\end{array}\)

Vậy \(S = \left[ {0;2} \right]\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Trần Văn Giàu

Số câu hỏi: 40

Copyright © 2021 HOCTAP247